IV Olimpíada Tocantinense de Química

Exame 3º Ano - Modalidade C

Questão 01

O Bismuto é um elemento muito usado na indústria de cosméticos, devido sua baixa toxicidade. O isótopo mais estável do Bismuto apresenta número de massa 209 e dar origem ao íon Bi³⁺ (forma mais estável). Qual a fórmula do composto iônico formado entre o bismuto e oxigênio.

d) Bi₂O₂

e) Bi₃O₂

a) BiO b) Bi₂O₃ c) BiO₂

Questão 02

Dissolvendo-se 1,0 mol de ácido acético em água suficiente para obter 1,0 L de líquido, resulta uma solução que tem uma concentração de íons H⁺ igual a 4,2 x10⁻³ mol/l. O percentual de ionização do ácido acético é de:

a) 0,42 %

b) 0,45 %

c) 0,5 %

d) 0,55 %

e) 0,40 %

Questão 03

O sal tricloreto de alumínio é utilizado dermatologicamente para controlar sudorese excessiva (hiperidrose). Em geral, o sal é produzido a partir da reação:

 $2AI_{(s)} + 6HCI_{(aq)} \rightarrow 2AICI_{3(aq)} + 3H_{2(g)}$

Quantos gramas de HCl a 36% (m/m) são necessários para produzir tricloreto de alumínio suficiente para preencher um frasco de 275 g de loção? Considere que a composição da loção é de 11% (m/m) desse sal.

a) 13 g b) 69 g c) 25 g d) 38 g e) 45 g

Questão 04

"A biomassa é uma das fontes para produção de energia com maior potencial de crescimento nos próximos anos. Um processo bastante utilizado no tratamento de dejetos orgânicos é a digestão anaeróbica que consiste na decomposição do material pela ação de bactérias e ocorre na ausência de ar atmosférico. O produto final é o biogás, composto basicamente de metano (CH4) e dióxido de carbono (CO2)." (Aneel – disponível em www. aneel.gov.br) Alternativas menos agressivas ao meio ambiente vêm ganhando espaço no desenvolvimento de novos combustíveis. Destaca-se o uso de hidrogênio como fonte renovável e não poluente em veículos automotivos, por exemplo.

De acordo com o texto e com os conceitos químicos que cercam esse tema, marque a alternativa **incorreta**:

- a) O aumento da emissão dos gases apresentados no texto intensifica o efeito estufa em nosso planeta.
- Na presença de luz, o metano pode reagir com o cloro, através de uma reação de substituição.
- c) Considerando que as entalpias de formação para o CH_{4(g)}, CO_{2(g)} e H₂O_(g) sejam, respectivamente, -74 kJ.mol⁻¹, -394 kJ.mol⁻¹ e -242 kJ.mol-1, a queima completa de 50 g de metano, libera energia inferior a 2500 kJ.

- d) Entre as vantagens do uso de hidrogênio como combustível está seu alto poder calorífico e sua queima que não gera gases poluentes.
- e) À hidrogenação do 3,4-dimetil-2-penteno produz o 2,3-dimetilpentano.

Questão 05

A sociedade moderna tem o desenvolvimento econômico baseado em sua principal matriz energética, o petróleo, combustível fóssil. As tendências atuais são: a busca por outros tipos de combustíveis e uma possível nova matriz energética. Um bom candidato a substituir o combustível fóssil é o biodiesel. Outro tipo de combustível candidato é a hidrazina (combustível de foguete).

Sobre o tema marque a única opção correta:

- a) A hidrazina (N_2H_4) pode reagir com o óxido férrico produzindo Fe_3O_4 , água e gás nitrogênio. Uma maneira para recuperação do óxido férrico poderia ser a oxidação do óxido produzido em presença de O_2 .
- b) O petróleo é visto como uma substância química simples e rica em hidrocarbonetos, compostos apolares em geral formados apenas por carbono e hidrogênio, possuindo diversas aplicações, tais como fabricação de plásticos, velas, gasolina, óleos, asfalto.
- c) Uma reação importante para fabricação de biodiesel é a reação de transesterificação, também denominada alcoólise, da qual se obtém um novo álcool e um éter.
- d) Quando o composto 2,3-dimetil-2-buteno e o alceno de menor massa molecular que apresenta isomeria cis-trans são submetidos à ozonólise, obtém-se os mesmos produtos.
- e) O dimetilacetileno é um composto orgânico classificado como alcino por apresentar uma ligação tripla entre carbonos com hibridização sp. Ao reagir esse alcino com um equivalente de Cl₂, obtém-se um produto, exclusivamente.

Questão 06

A Isotretinoína é um fármaco derivado da vitamina A, seu uso pela medicina é eficiente no tratamento da acne severa ou da rosácea. É utilizado também como medicamento na quimioterapia de certos tipos de câncer como o Neuroblastoma. Trata-se quimicamente do ácido 13-cisretinóico, Ácido 3,7-dimetil-9-(2,6,6-trimetil-1-ciclohexenil)nona-2,4,6,8-tetraenóico, isômero sintético da tretinoína, um teratogênico, cujo uso na gravidez é terminantemente proibido. No Brasil o medicamento é comercializado nome com Roacutan.(http://pt.wikipedia.org/wiki/Isotretino%C3%ADna).

Sobre esses compostos assinale o item verdadeiro.

- A isomeria que constituem esses compostos, trata-se a) da isomeria funcional.
- Na reação com uma base forte como o Hidróxido de b) sódio (NaOH), catalisada por ácido, a reação ocorrerá preferencialmente com a carbonila.
- c) As geometrias moleculares apresentadas por todas as ligações duplas são trigonais planas, com ângulo de ligação de aproximadamente 120º.
- A ligação química que ocorre entre os carbonos, C₆ e C₈, envolve a hibridação destes em sp², constituído por uma ligação do tipo sigma σ_{sp}^{2} -sp 2 e uma ligação do tipo π_{p-p} .
- A hidrogenação total na presença de Ni das olefinas em ambas as moléculas requer 5 mols de H₂ por molécula.

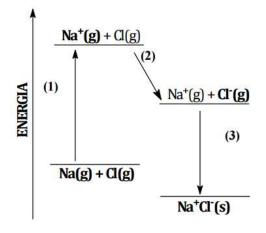
Questão 07

Considere o sistema em equilíbrio:

 $CO_{(g)} + 2H_2(g) \rightarrow CH_3OH_{(g)}$; $\Delta H < O$

Marque a afirmação verdadeira:

- A adição de um catalisador favorece a formação dos produtos.
- Aumentando-se a pressão total sobre o sistema, o equilíbrio não será deslocado.
- A formação de CH₃OH (g) será favorecida se aumentamos a pressão total sobre o sistema.
- d) A diminuição da temperatura desloca o equilíbrio para a esquerda.
- e) Aumentando-se a pressão parcial do H2, o equilíbrio desloca-se para a esquerda.


Questão 08

A desidratação de álcoois ocorre via dois tipos de reação e pode dar origem a alcenos ou éteres. Essas reações são denominadas respectivamente:

- a) Adição e substituição.
- b) Adição e condensação.
- c) Eliminação e substituição.
- d) Eliminação e condensação.
- e) Substituição e condensação.

Questão 09

O gráfico a seguir representa três etapas envolvidas na formação do cloreto de sódio a partir dos elementos formadores no estado gasoso.

As energias (1), (2) e (3) envolvidas em cada uma dessas etapas, são respectivamente:

- a) Atomização, ionização, solidificação. b) Atomização, afinidade eletrônica, solidificação.
- c)lonização, eletronegatividade, energia reticular. d)lonização, afinidade eletrônica, energia reticular.
- e) lonização, eletronegatividade, afinidade eletrônica.

Questão 10

Analise as fórmulas e, em seguida, identifique a alternativa que explica o que elas representam respectivamente.

- Ι. CH₃CH₂CH₂NH₂
- II. CH₃NHCH₂CH₃
- III. CH₃CH₂CONH₂
- IV. (CH₃CH₂CH₂)₃N
- Amina primária, amina secundária, amina terciária, amida.
- Amina secundária, amina primária, amina terciária, b) amida.
- c) Amina primária, amina secundária, amida, amina terciária.
- d) Amida, amina terciária, amina primária, amina secundária.
- e) Amina terciária, amida, amina secundária, amina primária.

Questão 11

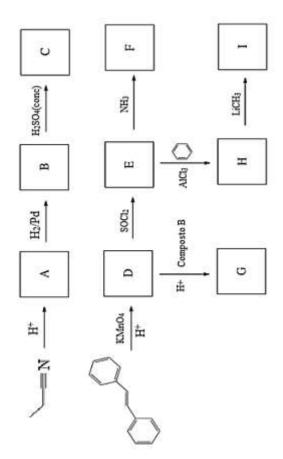
A equação que representa uma reação de craqueamento é a contida na alternativa:

- a) CH₃COOH + CH₃OH→ CH₃COOCH₃ + H₂O.
- b) $C_4H_8 + 6 O_2 \rightarrow 4 CO_2 + 4 H_2O$.
- c) $C_4H_8 + Br_2 \rightarrow C_4H_8Br_2$.
- d) $C_4H_{10} + C\ell_2 \rightarrow C_4H_9CI + HC\ell$.
- e) $C_4H_{10} \rightarrow C_2H_6 + C_2H_4$.

Questão 12

A corrosão eletroquímica opera como uma pilha. Ocorre uma transferência de elétrons quando dois metais de diferentes potenciais são colocados em contato. Como por exemplo, o zinco ligado à tubulação de ferro, estando a tubulação enterrada, pode-se, de acordo com os potenciais de eletrodo, verificar que o anodo é o zinco, que logo sofre corrosão, enquanto o ferro, que funciona como cátodo, fica protegido.

Dados: potenciais-padrão de oxidação em solução aquosa:


Semi reação ∆ Eº (volt)

 $Zn_{(s)} \rightarrow Zn^{2+} + 2e_- + 0,763 \text{ V}$ $Fe_{(s)} \rightarrow Fe^{2+} + 2e_- + 0,440 \text{ V}$

A ddp da pilha é de (v):

a) 0,323 b) 1.203 c) -0.323 d) -1.203 e) 601,5

O esquema abaixo apresenta sequências de reações a partir de compostos orgânicos comuns em síntese orgânica. Sabendo que cada letra representa um composto orgânico, apresente a estrutura dos compostos de A a I.

Questão 14

Reações de oxirredução fazem parte do nosso dia-a-dia. As pilhas, por exemplo, convertem energia química em elétrica através de reações redox. A concentração das espécies envolvidas nas semi-reações da pilha afetam o potencial da mesma, que pode ser medido através da equação de Nernst

$$E = E^{0} - \frac{0,0592}{n} log \frac{[C]^{c}[D]^{d}...}{[A]^{a}[B]^{b}...}$$

para reações do tipo: $aA + bB \rightleftharpoons cC + dD$ em que E é o potencial real, E^0 o potencial padrão e n o número de mols de elétrons transferidos na reação.

Considerando a reação não-balanceada abaixo, resolva os itens que se seguem.

$$MnO_4(aq) + Br(aq) + H(aq) \Rightarrow Mn^{2*}(aq) + Br_2(I) + H_2O(I)$$
 $E^0 = 0.42 \text{ V}$

- a) Faça o balanceamento de carga e massa para a reação acima.
- b) Dê os agentes oxidante e o redutor para esta reação.
- c) Escreva a equação que representa o potencial da reação em função da concentração das espécies presentes em solução.
- d) O potencial para a reação análoga com íons cloreto deve ser superior ou inferior ao potencial da reação dada?

Questão 15

- a) Escreva o grupo funcional dos aldeídos e o das cetonas.
- Após analisar os grupos que você desenhou, escreva a fórmula do aldeído e a da cetona mais simples e justifique sua resposta.

Questão 16

Tabela periódica dos elementos químicos

Uma vela de massa 34,5g é acesa e encoberta por um bequer. Após algum tempo a chama apaga. Após essa queima a massa da vela foi 33,8g. Considerando que a combustão é total e que a vela é formada apenas de $C_{30}H_{62}$, responda:

- a) Qual a massa de dióxido de carbono, CO2, formada?
- b) Qual a massa do reagente limitante?

	VALOR	6,02 x 10 ²⁵ mol ⁻¹	1,66 × 10 ²⁷ kg	1,60 x 10 ¹⁹ J	9,11 x 10 ⁻³¹ kg	1,67 x 10. ³⁷ kg
	NOME DA CONSTANTE	Número de Avagadro (NA)	Unidade de massa atômica (u)	Elétron-rolt (eV)	Massa do elétron (m _a)	Massa do néutron (m _n); massa do próton (m _p)
Constantes fundamentais da Fisica	VALOR	1,62 x 10 ¹⁹ C	9,65 x 104 C.mol*	6,63 x 10 ³⁴ J.s	22,71 L.mol ⁻¹	8,31 J.K ⁻¹ ,mol ⁻¹ = 0,062 atm.L.mol ⁻¹ K ⁻¹
Constantes fund	NOME DA CONSTANTE	Carga elétrica elementar (e)	Constante de Faraday (F)	Constante de Plancik (h)	Volume molar nas CNTP	Constante dos gases (R)

IV Olimpíada Tocantinense de Química

Exame 3º Ano - Modalidade C

FICHADEIDENTIFICAÇÃO					
	(em letra de forma)				
Nome:	Nome:				
	Data do nascimento:/				
Escola:					
Fone:	_ Cidade:	E-mail:			
-			_		
	Assinatura				

Folha de RESPOSTA

Questões Objetivas

Questão					
01	а	b	С	d	е
02	а	b	С	d	е
03	а	Ь	С	d	е
04	а	b	С	d	е
05	а	Ь	С	d	е
06	а	b	С	d	е
07	а	b	С	d	е
08	а	b	С	d	е
09	а	b	С	d	е
10	а	b	С	d	е
11	а	b	С	d	е
12	а	b	С	d	е

Marque uma alternativa para cada questão

IV Olimpíada Tocantinense de Química			
Exame 3º Ano – Modalidad	le C		
Alun@:			
RESPOSTA QUESTÃO 13			
		 	
_			
RESPOSTA QUESTÃO 14			

IV Olimpíada Tocantinense de Química Exame 3º Ano – Modalidade C
Alun@:
RESPOSTA QUESTÃO 15
RESPOSTA QUESTÃO 16